Login / Signup

N and P constrain C in ecosystems under climate change: Role of nutrient redistribution, accumulation, and stoichiometry.

Edward B RastetterBonnie L KwiatkowskiDavid W KicklighterAudrey A Barker PlotkinHelene GenetJesse B NippertKimberly O'KeefeSteven S PerakisStephen PorderSarah S RoleyRoger W RuessJonathan R ThompsonWilliam R WiederKevin R WilcoxRuth D Yanai
Published in: Ecological applications : a publication of the Ecological Society of America (2022)
We use the Multiple Element Limitation (MEL) model to examine responses of 12 ecosystems to elevated carbon dioxide (CO 2 ), warming, and 20% decreases or increases in precipitation. Ecosystems respond synergistically to elevated CO 2 , warming, and decreased precipitation combined because higher water-use efficiency with elevated CO 2 and higher fertility with warming compensate for responses to drought. Response to elevated CO 2 , warming, and increased precipitation combined is additive. We analyze changes in ecosystem carbon (C) based on four nitrogen (N) and four phosphorus (P) attribution factors: (1) changes in total ecosystem N and P, (2) changes in N and P distribution between vegetation and soil, (3) changes in vegetation C:N and C:P ratios, and (4) changes in soil C:N and C:P ratios. In the combined CO 2 and climate change simulations, all ecosystems gain C. The contributions of these four attribution factors to changes in ecosystem C storage varies among ecosystems because of differences in the initial distributions of N and P between vegetation and soil and the openness of the ecosystem N and P cycles. The net transfer of N and P from soil to vegetation dominates the C response of forests. For tundra and grasslands, the C gain is also associated with increased soil C:N and C:P. In ecosystems with symbiotic N fixation, C gains resulted from N accumulation. Because of differences in N versus P cycle openness and the distribution of organic matter between vegetation and soil, changes in the N and P attribution factors do not always parallel one another. Differences among ecosystems in C-nutrient interactions and the amount of woody biomass interact to shape ecosystem C sequestration under simulated global change. We suggest that future studies quantify the openness of the N and P cycles and changes in the distribution of C, N, and P among ecosystem components, which currently limit understanding of nutrient effects on C sequestration and responses to elevated CO 2 and climate change.
Keyphrases
  • climate change
  • human health
  • plant growth
  • carbon dioxide
  • organic matter
  • minimally invasive
  • heat stress
  • heavy metals
  • case control