Topological dislocation modes in three-dimensional acoustic topological insulators.
Liping YeChunyin QiuMeng XiaoTianzi LiJuan DuManzhu KeZhengyou LiuPublished in: Nature communications (2022)
Dislocations are ubiquitous in three-dimensional solid-state materials. The interplay of such real space topology with the emergent band topology defined in reciprocal space gives rise to gapless helical modes bound to the line defects. This is known as bulk-dislocation correspondence, in contrast to the conventional bulk-boundary correspondence featuring topological states at boundaries. However, to date rare compelling experimental evidences have been presented for this intriguing topological observable in solid-state systems, owing to the huge challenges in creating controllable dislocations and conclusively identifying topological signals. Here, using a three-dimensional acoustic weak topological insulator with precisely controllable dislocations, we report an unambiguous experimental evidence for the long-desired bulk-dislocation correspondence, through directly measuring the gapless dispersion of the one-dimensional topological dislocation modes. Remarkably, as revealed in our further experiments, the pseudospin-locked dislocation modes can be unidirectionally guided in an arbitrarily-shaped dislocation path. The peculiar topological dislocation transport, expected in a variety of classical wave systems, can provide unprecedented control over wave propagations.