Login / Signup

Two Rare-Earth Molecular Ferroelectrics with High Curie Temperatures, Large Spontaneous Polarization, Switchable Second Harmonic Generation Effects, and Strong Photoluminescence.

Kang YangChang-Shan YangXing-Xian DongYu-Hui TanYun-Zhi TangWen-Juan Wei
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
Smart multifunctional molecular ferroelectrics bearing high Curie temperatures and diverse excellent physical properties, such as second harmonic generation (SHG) responses, luminescence, and semiconductivity, among others, have significant applications but have seldom been documented. Herein, the rare-earth metals Nd and Pr are introduced into a simple molecular system (nBu4 N)3 [M(NO3 )x (SCN)y ] (nBu4 N= tetrabutyl ammonium, M=rare-earth metal, nBu=CH3 CH2 CH2 CH2 ), and two new multifunctional molecular ferroelectrics are obtained: (nBu4 N)3 [Nd(NO3 )4 (SCN)2 ] (1) and (nBu4 N)3 [Pr(NO3 )4 (SCN)2 ] (2). Their distinct heat and dielectric anomaly dependence on temperature verifies that compounds 1 and 2 experience high-temperature para-ferroelectric phase transitions at 408 and 413 K, respectively. Strikingly, both molecular ferroelectrics possess large spontaneous polarization with Ps values of 9.05 and 8.50 μC cm-2 , respectively, and are further characterized by the appearance of multiple intersecting non-180° domains and polarization switching behavior. In particular, compounds 1 and 2 show good stability with only a small decrease in SHG intensity after switching cycles, suggesting that they have great potential for application in nonlinear optical (NLO) switches. Simultaneously, the rare-earth compounds 1 and 2 present bright yellow-red and bright green fluorescence, respectively, at room temperature.
Keyphrases
  • room temperature
  • single molecule
  • drug delivery
  • ionic liquid
  • quantum dots
  • mental health
  • high resolution
  • cancer therapy
  • energy transfer
  • health risk