Low Noise Opto-Electro-Mechanical Modulator for RF-to-Optical Transduction in Quantum Communications.
Michele BonaldiAntonio BorrielliGiovanni Di GiuseppeNicola MalossiBruno MoranaRiccardo NataliPaolo PiergentiliPasqualina Maria SarroEnrico SerraDavid VitaliPublished in: Entropy (Basel, Switzerland) (2023)
In this work, we present an Opto-Electro-Mechanical Modulator (OEMM) for RF-to-optical transduction realized via an ultra-coherent nanomembrane resonator capacitively coupled to an rf injection circuit made of a microfabricated read-out able to improve the electro-optomechanical interaction. This device configuration can be embedded in a Fabry-Perot cavity for electromagnetic cooling of the LC circuit in a dilution refrigerator exploiting the opto-electro-mechanical interaction. To this aim, an optically measured steady-state frequency shift of 380 Hz was seen with a polarization voltage of 30 V and a Q -factor of the assembled device above 106 at room temperature. The rf-sputtered titanium nitride layer can be made superconductive to develop efficient quantum transducers.