Login / Signup
Our study shows that balanced modules from large terminologies can be extracted using ontology graph-traversal modularization techniques under certain conditions: that the process is repeated a number of times, the input signature is dynamically adjusted in each iteration, and a moderate under/over-representation of some hierarchies is tolerated. In the case of SNOMED CT, our results conclusively show that it can be squeezed to less than 5 % of its size without any sub-hierarchy losing its shape more than 8 %, which is likely sufficient in most use cases.
Keyphrases