Login / Signup

Molecular dynamics analysis of the friction between a water-methanol liquid mixture and a non-polar solid crystal surface.

Satoshi NakaokaYasutaka YamaguchiTakeshi OmoriLaurent Joly
Published in: The Journal of chemical physics (2018)
We performed molecular dynamics analysis of the momentum transfer at the solid-liquid interface for a water-methanol liquid mixture between parallel non-polar solid walls in order to understand the strong decrease of the friction coefficient (FC) induced by the methanol adsorption at the surface observed in our previous work [S. Nakaoka et al., Phys. Rev. E 92, 022402 (2015)]. In particular, we extracted the individual contributions of water and methanol molecules to the total FC and found that the molecular FC for methanol was larger than that for water. We further showed that the reduction of the total solid-liquid FC upon the increase of the methanol molar fraction in the first adsorption layer occurred as a result of a decrease in the molecular number density as well as a decrease in the molecular FCs of both molecules. Analysis of the molecular orientation revealed that the decrease of the molecular FC of methanol resulted from changes of the contact feature onto the solid surface. Specifically, methanol molecules near the solid surface had their C-O bond parallel to the surface with both CH3 and O sites contacting the solid at low methanol molar fraction, while they had their C-O bond outward from the surface with only the CH3 site contacting the solid at higher methanol molar fraction. The mechanisms discussed in this work could be used to search for alternative water additives to further reduce the solid-liquid friction.
Keyphrases
  • molecular dynamics
  • carbon dioxide
  • ionic liquid
  • density functional theory
  • machine learning
  • single molecule
  • magnetic resonance
  • neural network