Decarbonylative Fluoroalkylation at Palladium(II): From Fundamental Organometallic Studies to Catalysis.
Naish LallooChristian A MalapitS Maryamdokht TaimooryConor E BrighamMelanie S SanfordPublished in: Journal of the American Chemical Society (2021)
This Article describes the development of a decarbonylative Pd-catalyzed aryl-fluoroalkyl bond-forming reaction that couples fluoroalkylcarboxylic acid-derived electrophiles [RFC(O)X] with aryl organometallics (Ar-M'). This reaction was optimized by interrogating the individual steps of the catalytic cycle (oxidative addition, carbonyl de-insertion, transmetalation, and reductive elimination) to identify a compatible pair of coupling partners and an appropriate Pd catalyst. These stoichiometric organometallic studies revealed several critical elements for reaction design. First, uncatalyzed background reactions between RFC(O)X and Ar-M' can be avoided by using M' = boronate ester. Second, carbonyl de-insertion and Ar-RF reductive elimination are the two slowest steps of the catalytic cycle when RF = CF3. Both steps are dramatically accelerated upon changing to RF = CHF2. Computational studies reveal that a favorable F2C-H---X interaction contributes to accelerating carbonyl de-insertion in this system. Finally, transmetalation is slow with X = difluoroacetate but fast with X = F. Ultimately, these studies enabled the development of an (SPhos)Pd-catalyzed decarbonylative difluoromethylation of aryl neopentylglycol boronate esters with difluoroacetyl fluoride.