Login / Signup

Defect Nanostructure and its Impact on Magnetism of α-Cr 2 O 3 Thin Films.

Igor VeremchukMaciej Oskar LiedkePavlo MakushkoTobias KosubNatascha HedrichOleksandr V PylypovskyiFabian GanssMaik ButterlingRené HübnerEric HirschmannAhmed G AttallahAndreas WagnerKai WagnerBrendan ShieldsPatrick MaletinskyJürgen FassbenderDenys Makarov
Published in: Small (Weinheim an der Bergstrasse, Germany) (2022)
Thin films of the magnetoelectric insulator α-Cr 2 O 3 are technologically relevant for energy-efficient magnetic memory devices controlled by electric fields. In contrast to single crystals, the quality of thin Cr 2 O 3 films is usually compromised by the presence of point defects and their agglomerations at grain boundaries, putting into question their application potential. Here, the impact of the defect nanostructure, including sparse small-volume defects and their complexes is studied on the magnetic properties of Cr 2 O 3 thin films. By tuning the deposition temperature, the type, size, and relative concentration of defects is tailored, which is analyzed using the positron annihilation spectroscopy complemented with electron microscopy studies. The structural characterization is correlated with magnetotransport measurements and nitrogen-vacancy microscopy of antiferromagnetic domain patterns. Defects pin antiferromagnetic domain walls and stabilize complex multidomain states with a domain size in the sub-micrometer range. Despite their influence on the domain configuration, neither small open-volume defects nor grain boundaries in Cr 2 O 3 thin films affect the Néel temperature in a broad range of deposition parameters. The results pave the way toward the realization of spin-orbitronic devices where magnetic domain patterns can be tailored based on defect nanostructures without affecting their operation temperature.
Keyphrases