Login / Signup

Electronic Traps and Their Correlations to Perovskite Solar Cell Performance via Compositional and Thermal Annealing Controls.

Taehyun HwangAlan Jiwan YunJinhyun KimDuckhyung ChoSangyeon KimSeunghun HongByungwoo Park
Published in: ACS applied materials & interfaces (2019)
Herein, underlying factors for enabling efficient and stable performance of perovskite solar cells are studied through nanostructural controls of organic-inorganic halide perovskites. Namely, MAPbI3, (FA0.83MA0.17)Pb(I0.83Br0.17)3, and (Cs0.10FA0.75MA0.15)Pb(I0.85Br0.15)3 perovskites (abbreviated as MA, FAMA, and CsFAMA, respectively) are examined with a grain growth control through thermal annealing. FAMA- and CsFAMA-based cells result in stable photovoltaic performance, while MA cells are sensitively dependent on the perovskite grain size dominated by annealing time. Micro-/nanoscopic features are comprehensively analyzed to unravel the origin that is directly correlated to the cell performance with the applications of electronic-trap characterizations such as photoconductive noise microscopy and capacitance analyses. It is revealed that CsFAMA has a lower trap density compared to MA and FAMA through the analyses of 1/ f noises and trapping/detrapping capacitances. Also, an open-circuit voltage ( Voc) change is correlated to the variation of trap states during the shelf-life test: FAMA and CsFAMA cells with the negligible change of Voc over weeks exhibit trap states shifting toward the band edge, although the power-conversion efficiencies are clearly reduced. The origins that critically affect the solar cell performance through the characterizations of shallow/deep traps with additional mobile defects in the perovskite and interfaces are discussed.
Keyphrases