Login / Signup

Dynamic causal modelling highlights the importance of decreased self-inhibition of the sensorimotor cortex in motor fatigability.

Caroline HeimhoferMarc BächingerRea LehnerStefan FrässleJoshua Henk BalstersNicole Wenderoth
Published in: Brain structure & function (2024)
Motor fatigability emerges when challenging motor tasks must be maintained over an extended period of time. It is frequently observed in everyday life and affects patients as well as healthy individuals. Motor fatigability can be measured using simple tasks like finger tapping at maximum speed for 30 s. This typically results in a rapid decrease of tapping frequency, a phenomenon called motor slowing. In a previous study (Bächinger et al, eLife, 8 (September), https://doi.org/10.7554/eLife.46750 , 2019), we showed that motor slowing goes hand in hand with a gradual increase in blood oxygen level dependent signal in the primary sensorimotor cortex (SM1), supplementary motor area (SMA), and dorsal premotor cortex (PMd). It is unclear what drives the activity increase in SM1 caused by motor slowing and whether motor fatigability affects the dynamic interactions between SM1, SMA, and PMd. Here, we performed dynamic causal modelling (DCM) on data of 24 healthy young participants collected during functional magnetic resonance imaging to answer this question. The regions of interest (ROI) were defined based on the peak activation within SM1, SMA, and PMd. The model space consisted of bilateral connections between all ROI, with intrinsic self-modulation as inhibitory, and driving inputs set to premotor areas. Our findings revealed that motor slowing was associated with a significant reduction in SM1 self-inhibition, as uncovered by testing the maximum à posteriori against 0 (t(23)=-4.51, p < 0.001). Additionally, the model revealed a significant decrease in the driving input to premotor areas (t(23) > 2.71, p < 0.05) suggesting that structures other than cortical motor areas may contribute to motor fatigability.
Keyphrases