Temperature and Emissivity Inversion Accuracy of Spectral Parameter Changes and Noise of Hyperspectral Thermal Infrared Imaging Spectrometers.
Honglan ShaoChengyu LiuChunlai LiJian-Yu WangFeng XiePublished in: Sensors (Basel, Switzerland) (2020)
The emergence of hyperspectral thermal infrared imaging spectrometers makes it possible to retrieve both the land surface temperature (LST) and the land surface emissivity (LSE) simultaneously. However, few articles focus on the problem of how the instrument's spectral parameters and instrument noise level affect the LST and LSE inversion errors. In terms of instrument development, this article simulated three groups of hyperspectral thermal infrared data with three common spectral parameters and each group of data includes tens of millions of simulated radiances of 1525 emissivity curves with 17 center wavelength shift ratios, 6 full width at half maximum (FWHM) change ratios and 6 noise equivalent differential temperatures (NEDTs) under 15 atmospheric conditions with 6 object temperatures, inverted them by two temperature and emissivity separation methods (ISSTES and ARTEMISS), and analyzed quantitatively the effects of the spectral parameters change and noise of an instrument on the LST and LSE inversion errors. The results show that: (1) center wavelength shifts and noise affect the inversion errors strongly, while FWHM changes affect them weakly; (2) the LST and LSE inversion errors increase with the center wavelength shift ratio in a quadratic function and increase with FWHM change ratio slowly and linearly for both the inversion methods, however they increase with NEDT in an S-curve for ISSTES while they increase with NEDT slightly and linearly for ARTEMISS. During the design and development of a hyperspectral thermal infrared instrument, it is highly recommended to keep the potential center wavelength shift within 1 band and keep NEDT within 0.1K (corresponding LST error < 1K and LSE error < 0.015) for normal applications and within 0.03K (corresponding LST error < 0.5K and LSE error < 0.01) for better application effect and level.
Keyphrases
- contrast enhanced
- air pollution
- optical coherence tomography
- patient reported outcomes
- adverse drug
- high resolution
- climate change
- electronic health record
- magnetic resonance imaging
- particulate matter
- dual energy
- big data
- computed tomography
- emergency department
- risk assessment
- machine learning
- deep learning
- human health
- liquid chromatography
- photodynamic therapy