Login / Signup

Co0.7Fe0.3 NPs confined in yolk-shell N-doped carbon: engineering multi-beaded fibers as an efficient bifunctional electrocatalyst for Zn-air batteries.

Ling LongHaohui LiuJianbo JiaYelong ZhangShaojun Dong
Published in: Nanoscale (2021)
The development of bifunctional catalysts with a delicate structure, high efficiency, and good durability for the oxygen evolution reaction (ORR) and oxygen evolution reaction (OER) is crucial to renewable Zn-air batteries. In this work, Co0.7Fe0.3 alloy nanoparticles (NPs) confined in N-doped carbon with a yolk-shell structure in multi-beaded fibers were prepared as a bifunctional electrocatalyst. The confinement structure was composed of an N-doped graphitized carbon shell and a core formed by numerous Co0.7Fe0.3 NPs, and was evenly threaded into a one-dimensional fiber. Moreover, this distinctive hierarchical structure featured abundant mesopores, a high BET surface area of 743.8 m2 g-1, good electronic conductivity, and uniformly distributed Co0.7Fe0.3/Co(Fe)-Nx coupling active sites. Therefore, the experimentally optimized Co0.7Fe0.3@NC2:1-800 showed excellent OER performance (overpotential reached 314 mV at 10 mA cm-2) that far exceeded RuO2 (353 mV), and good ORR catalytic performance (half-wave potential of 0.827 V) comparable to Pt/C (0.818 V). Impressively, the Co0.7Fe0.3@NC2:1-800 Zn-air battery delivered a higher open circuit voltage of 1.449 V, large power density of 85.7 mW cm-2, and outstanding charge-discharge cycling stability compared with the commercial RuO2 + 20 wt% Pt/C catalyst. This work provides new ideas for the structural design of electrocatalysts and energy conversion systems.
Keyphrases
  • metal organic framework
  • highly efficient
  • visible light
  • high efficiency
  • heavy metals
  • quantum dots
  • risk assessment
  • minimally invasive
  • room temperature
  • ionic liquid
  • human health
  • aqueous solution
  • neural network