Login / Signup

Prediction of Reactive Nitrous Acid Formation in Rare-Earth MOFs via ab initio Molecular Dynamics.

Dayton J VogelJessica M RimszaTina M Nenoff
Published in: Angewandte Chemie (International ed. in English) (2021)
Reactive gas formation in pores of metal-organic frameworks (MOFs) is a known mechanism of framework destruction; understanding those mechanisms for future durability design is key to next generation adsorbents. Herein, an extensive set of ab initio molecular dynamics (AIMD) simulations are used for the first time to predict competitive adsorption of mixed acid gases (NO2 and H2 O) and the in-pore reaction mechanisms for a series of rare earth (RE)-DOBDC MOFs. Spontaneous formation of nitrous acid (HONO) is identified as a result of deprotonation of the MOF organic linker, DOBDC. The unique DOBDC coordination to the metal clusters allows for proton transfer from the linker to the NO2 without the presence of H2 O and may be a factor in DOBDC MOF durability. This is a previously unreported mechanisms of HONO formation in MOFs. With the presented methodology, prediction of future gas interactions in new nanoporous materials can be achieved.
Keyphrases
  • metal organic framework
  • molecular dynamics
  • density functional theory
  • current status
  • carbon dioxide
  • electron transfer