Login / Signup

XAB2 dynamics during DNA damage-dependent transcription inhibition.

Lise-Marie DonnioElena CeruttiCharlene MagnaniDamien NeuilletPierre-Olivier MariGiuseppina Giglia-Mari
Published in: eLife (2022)
Xeroderma Pigmentosum group A-binding protein 2 (XAB2) is a multifunctional protein playing a critical role in distinct cellular processes including transcription, splicing, DNA repair, and messenger RNA export. In this study, we demonstrate that XAB2 is involved specifically and exclusively in Transcription-Coupled Nucleotide Excision Repair (TC-NER) reactions and solely for RNA polymerase 2 (RNAP2)-transcribed genes. Surprisingly, contrary to all the other NER proteins studied so far, XAB2 does not accumulate on the local UV-C damage; on the contrary, it becomes more mobile after damage induction. XAB2 mobility is restored when DNA repair reactions are completed. By scrutinizing from which cellular complex/partner/structure XAB2 is released, we have identified that XAB2 is detached after DNA damage induction from DNA:RNA hybrids, commonly known as R-loops, and from the CSA and XPG proteins. This release contributes to the DNA damage recognition step during TC-NER, as in the absence of XAB2, RNAP2 is blocked longer on UV lesions. Moreover, we also demonstrate that XAB2 has a role in retaining RNAP2 on its substrate without any DNA damage.
Keyphrases
  • dna damage
  • dna repair
  • oxidative stress
  • dna damage response
  • binding protein
  • transcription factor
  • drug delivery
  • gene expression
  • protein protein