A pathologically expanded, clonal lineage of IL-21 producing CD4+ T cells drives Inflammatory neuropathy.
Maryam Sadat SeyedsadrMadison BangEthan McCarthyShirley ZhangHo-Chung ChenMahnia MohebbiWilly HugoJason K WhitmireMelissa G LechnerMaureen A SuPublished in: bioRxiv : the preprint server for biology (2024)
Inflammatory neuropathies, which include CIDP (chronic inflammatory demyelinating polyneuropathy) and GBS (Guillain Barre Syndrome), result from autoimmune destruction of the peripheral nervous system (PNS) and are characterized by progressive weakness and sensory loss. CD4+ T cells play a key role in the autoimmune destruction of the PNS. Yet, key properties of pathogenic CD4+ T cells remain incompletely understood. Here, we use paired scRNAseq and scTCRseq of peripheral nerves from an inflammatory neuropathy mouse model to identify IL-21 expressing CD4+ T cells that are clonally expanded and multifunctional. These IL-21-expressing CD4+ T cells are comprised of two transcriptionally distinct expanded populations, which express genes associated with Tfh and Tph subsets. Remarkably, TCR clonotypes are shared between these two IL-21-expressing populations, suggesting a common lineage differentiation pathway. Finally, we demonstrate that IL-21 signaling is required for neuropathy development and pathogenic T cell infiltration into peripheral nerves. IL-21 signaling upregulates CXCR6, a chemokine receptor that promotes CD4+ T cell localization in peripheral nerves. Together, these findings point to IL-21 signaling, Tfh/Tph differentiation, and CXCR6-mediated cellular localization as potential therapeutic targets in inflammatory neuropathies.