Login / Signup

Self-cleaning cellulose acetate/ crystalline nanocellulose/ polyvinylidene fluoride/ Mg0.975Ni0.025SiO3 membrane for removal of diclofenac sodium and methylene blue dye in water.

Patricia García-RamírezLuis Armando Diaz-Torres
Published in: Nanotechnology (2023)
Recalcitrant pollutants present in wastewater, without an effective treatment, have several effects on aquatic ecosystems and human health due to their chemical structure and persistence. Therefore, it is crucial the development of efficient technologies to eliminate such pollutants in water. Nano-photocatalysts are considered a promising technology for water remediation; however, one common drawback is the difficulty of recovering it after water processing. One effective strategy to overcome such problem is its immobilization into substrates such as polymeric membranes. In this study, a polymeric membrane with embedded Mg0.975Ni0.025SiO3 is proposed to remove model pollutants diclofenac sodium and methylene blue dye by synergetic adsorption and photocatalytic processes. Mg0.975Ni0.025SiO3 was synthesized by the combustion method. The matrix polymeric blend consisting of a blend of cellulose acetate, crystalline nanocellulose and polyvinylidene fluoride was obtained by the phase inversion method. The composite membranes were characterized by FTIR, X-Ray Diffraction, and scanning electron microscopy. With pollutant solutions at pH 7, the pollutant adsorption capacity of the membranes reached up to 30% and 45% removal efficiencies for diclofenac sodium and methylene blue, respectively. Under simulated solar irradiation photocatalytic removal performances of 70% for diclofenac sodium pH 7, and of 97% for methylene blue dye at pH 13, were reached. The membrane photocatalytic activity allows the membrane to avoid pollutant accumulation on its surface, given a self-cleaning property that allows the reuse of at least three cycles under sunlight simulator irradiation. These results suggest the high potential of photocatalytic membranes using suitable and economical materials such as cellulosic compounds and magnesium silicates for water remediation.
Keyphrases