Properties and applications of photoexcited chromophore-radical systems.
Theresia QuintesMaximilian MayländerSabine RichertPublished in: Nature reviews. Chemistry (2023)
Photoexcited organic chromophore-radical systems hold great promise for a range of technological applications in molecular spintronics, including quantum information technology and artificial photosynthesis. However, further development of such systems will depend on the ability to control the magnetic properties of these materials, which requires a profound understanding of the underlying excited-state dynamics. In this Review, we discuss photogenerated triplet-doublet systems and their potential to be used for applications in molecular spintronics. We outline the theoretical description of the spin system in the different coupling regimes and the invoked excited-state mechanisms governing the generation and transfer of spin polarization. The main characterization techniques used to evaluate the optical and magnetic properties of chromophore-radical systems are discussed. We conclude by giving an overview of previously investigated covalently linked triplet-radical systems, and highlight the need for further systematic investigations to improve our understanding of the magnetic interactions in such systems.