Login / Signup

Deciphering a survival strategy during the interspecific competition between Bacillus cereus MSM-S1 and Pseudomonas sp. MSM-M1.

Brinta ChakrabortyAnish MallickSumana AnnagiriSupratim SenguptaTapas K Sengupta
Published in: Royal Society open science (2016)
Interspecific competition in bacteria governs colony growth dynamics and pattern formation. Here, we demonstrate an interesting phenomenon of interspecific competition between Bacillus cereus MSM-S1 and Pseudomonas sp. MSM-M1, where secretion of an inhibitor by Pseudomonas sp. is used as a strategy for survival. Although B. cereus grows faster than Pseudomonas sp., in the presence of Pseudomonas sp. the population of B. cereus reduces significantly, whereas Pseudomonas sp. do not show any marked alteration in their population growth. Appearance of a zone of inhibition between growing colonies of two species on nutrient agar prevents the expanding front of the MSM-S1 colony from accessing and depleting nutrients in the region occupied by MSM-M1, thereby aiding the survival of the slower growing MSM-M1 colonies. To support our experimental results, we present simulations, based on a chemotactic model of colony growth dynamics. We demonstrate that the chemical(s) secreted by Pseudomonas sp. is responsible for the observed inhibition of growth and spatial pattern of the B. cereus MSM-S1 colony. Our experimental results are in excellent agreement with the numerical results and confirm that secreted inhibitors enable Pseudomonas sp. to survive and coexist in the presence of faster growing B. cereus, in a common niche.
Keyphrases
  • men who have sex with men
  • hiv testing
  • biofilm formation
  • plant growth
  • pseudomonas aeruginosa
  • staphylococcus aureus
  • escherichia coli
  • free survival
  • molecular dynamics
  • mouse model
  • bacillus subtilis