Login / Signup

On-off-on luminescent pyrophosphate probe based on the use of Mn-doped ZnS quantum dots and using Eu(III) as a mediator.

Jiawei PangYuexiang LuXinyu GaoPanshu SongFengyi YangYueying Liu
Published in: Mikrochimica acta (2018)
A selective phosphorescent on-off-on probe with long decay lifetime has been designed for the detection of pyrophosphate ions (PPi). The detection scheme is based on the use of europium(III)-modulated Mn(II)-doped ZnS quantum dots capped with N-acetyl-L-cysteine. Both the aggregation of quantum dots and electron transfer induced by Eu(III) ions cause phosphorescence to be quenched ("off" state). Phosphorescence is, however, restored on addition of PPi to the system ("on" state). The effect is attributed to the removal of Eu(III) from the carboxy groups on the surface of the quantum dots owing to the stronger interaction between PPi and Eu(III). A linear relationship exists between phosphorescence intensity (best measured at excitation/emission wavelengths of 316/594 nm) and PPi concentration in the 400 nM to 6000 nM with a detection limit of 145 nM. An additional attractive feature is provided by the long-lived phosphorescence (1920 μs) of the quantum dots. It can be used to eliminate interference by short-lived fluorescence in biological samples by performing time resolved measurements. The probe was applied to the determination of PPi in spiked in urine samples and gave recoveries in the range from 98 to 105% with RSDs of <2.0%. Graphical abstract Schematic of a long-lived phosphorescent on-off-on probe for the sensitive and selective detection of pyrophosphate ions (PPi). It is based on the use of Eu(III)-modulated Mn(II)-doped ZnS quantum dots (QDs). Phosphorescence is quenched of QDs after the addition of Eu3+but restored after the addition of PPi.
Keyphrases