Login / Signup

Structural Variation and Chemical Performance-A Study of the Effects of Chemical Structure upon Epoxy Network Chemical Performance.

Stephen T KnoxAnthony WrightColin CameronJohn Patrick Anthony Fairclough
Published in: ACS applied polymer materials (2021)
Epoxy resins are used widely as protective coatings, in a wide range of harsh chemical environments. This work explores the influence of subtle structural variation in both epoxy and amine monomers upon chemical performance of cured networks, whether changing molecular geometry, the nature of the chemistry, or the mass between cross-linking reactive groups. To achieve this, four industrially relevant epoxy resins (two based on bisphenol A-Epikote 828 (E828) and Dow Epoxy Resin 332 (DER 332)-and two based on bisphenol F-Dow Epoxy Resin 354 (DER 354) and Araldite PY306 (PY306)) and the isomerically pure para-para-diglycidyl ether of bisphenol F (ppDGEBF) were used to explore variation caused by epoxy monomer variation. Four similar amines (meta-xylylenediamine (MXDA), para-xylylenediamine (PXDA), 1,3-bis(aminomethyl)cyclohexane (1,3-BAC), 1,4-bis(aminomethyl)cyclohexane (1,4-BAC)) were used to explore any variations caused by regioisomerism and aromaticity. Bisphenol F-based resins were found to outperform bisphenol A-based analogues, and chain extension within the epoxy component was found to be detrimental to performance. For amines, 1,3-substitution (vs 1,4) and aromaticity were both found to be beneficial to chemical performance.
Keyphrases
  • ionic liquid
  • high resolution
  • single molecule