Login / Signup

Assessing the impact of immobilisation on the bioavailability of PFAS to plants in contaminated Australian soils.

Sali Khair BiekLeadin S KhudurLaura RigbyNavneet SinghMatthew AskelandAndrew S Ball
Published in: Environmental science and pollution research international (2024)
Per- and polyfluoroalkyl substances (PFAS) have become a key concern to both environmental and human health due to their extreme persistence in the environment and their ability to bioaccumulate in plants, animals, and humans. In this mesocosm study, Australian PFAS-contaminated soil with a mean total concentration of 8.05 mg/kg and a mean combined PFHxS + PFOS concentration of 7.89 mg/kg was treated with an immobilisation sorbent (RemBind®) at different application rates (0.5, 1, 1.5, 2, 3, 4, and 5% w/w). To assess the efficacy of this immobilisation treatment, PFAS leachability, PFAS plant uptake, and ecotoxicity tests were conducted. Leachability testing was performed according to the Australian Standard Leaching Procedure (ASLP) at pH 5 and 7. A grass species (Dactylis glomerata) was used to measure plant uptake of PFAS from untreated and treated contaminated soil. In addition, the Microtox test was used to assess the associated ecotoxicity. The immobilisation treatment resulted in a significant reduction of 88.5-99.8% in the total PFAS leachability and 88.7-99.8% in the combined PFOS and PFHxS leachability at pH 5. Similarly, significant reductions (5-12-fold) were observed in the plant uptake of total PFAS and combined PFOS and PFHxS in all treated soil samples. In addition, although the Microtox test showed relatively low ecotoxicity in all the experimental samples, including the untreated soil, a significant decrease in the ecotoxicity of treated soil samples was observed. The results from this study highlight that this treatment approach has the potential to reduce both PFAS leachability and plant bioavailability with a relatively low associated ecotoxicity. This is likely to reduce the risk of the transfer of PFAS into higher trophic levels. This immobilisation treatment may, therefore, reduce the risk associated with PFAS-contaminated soils and may be an important remediation tool for managing certain PFAS-contaminated soils.
Keyphrases
  • heavy metals
  • human health
  • drinking water
  • newly diagnosed
  • cell wall
  • anaerobic digestion