Login / Signup

Comparative analysis of daily and hourly temperature variability in association with all-cause and cardiorespiratory mortality in 45 US cities.

Yong YuSiqi LuoYunquan ZhangLinjiong LiuKe WangLe HongQun Wang
Published in: Environmental science and pollution research international (2021)
Temperature variability (TV) has been widely associated with increased mortality risk and burden. Extensive researches have used the standard deviations of several days' daily maximum and minimum temperatures or hourly mean temperatures as daily and hourly TV measures (TVdaily and TVhourly). However, comparative analysis of daily and hourly TV related to cardiorespiratory mortality is still limited. We collected daily mortality and meteorological data in 45 US metropolises, 1987-2000. A three-stage analysis was adopted to investigate TV-mortality associations using TVdaily and TVhourly as exposure metrics. We first applied a time-series quasi-Poisson regression to estimate location-specific TV-mortality relationships, which were then pooled using random-effects meta-analysis with maximum likelihood estimation. We additionally calculated attributable fraction (AF) as a reflection of mortality burden associated with TV. Stratified analyses by age were also performed to identify the susceptible group to TV-related risks. There were a total of 15.4 million all-cause deaths, of which 6.1 million were from cardiovascular causes and 1.2 million were from respiratory causes. Per 1 °C increase in TVdaily and TVhourly was associated with an increase of 0.53% (95% confidence interval: 0.31-0.76%) and 0.52% (0.26-0.79%) in cardiovascular mortality risks, 0.62% (0.26-0.98%) and 0.53% (0.13-0.94%) in respiratory mortality risks. Estimates of cardiovascular AF for TVdaily and TVhourly were 2.43% (1.42-3.43%) vs. 1.63% (0.82-2.43%), whereas estimates of respiratory AF were 3.07% (1.11-4.99%) vs. 1.89% (0.43-3.34%). Both daily and hourly TV indexes showed approximately linear relationships with different mortality categories and similar lag patterns, but greater fractions were estimated using TVdaily than those using TVhourly. People over 75 years old were relatively more vulnerable to TV-induced risks of mortality. In conclusion, both TVdaily and TVhourly significantly increased all-cause and cardiorespiratory mortality risks and burden. Daily and hourly TV metrics exhibited comparable effects of mortality risk, while greater mortality burden was estimated using TVdaily than TVhourly. Our findings may add significance to TV-mortality research and help to promote optimal health management strategies to better mitigate TV-related health effects.
Keyphrases