Login / Signup

Enhanced Phosphorus Locking by Novel Lanthanum/Aluminum-Hydroxide Composite: Implications for Eutrophication Control.

Rui XuMeiyi ZhangRobert J G MortimerGang Pan
Published in: Environmental science & technology (2017)
Lanthanum (La) bearing materials have been widely used to remove phosphorus (P) in water treatment. However, it remains a challenge to enhance phosphate (PO4) adsorption capacity and La usage efficiency. In this study, La was coprecipitated with aluminum (Al) to obtain a La/Al-hydroxide composite (LAH) for P adsorption. The maximum PO4 adsorption capacities of LAH (5.3% La) were 76.3 and 45.3 mg P g-1 at pH 4.0 and 8.5, which were 8.5 and 5.3 times higher than those of commercially available La-modified bentonite (Phoslock, 5.6% La), respectively. P K-edge X-ray absorption near edge structure analysis showed that PO4 was preferentially bonded with Al under weakly acid conditions (pH 4.0), while tended to associate with La under alkaline conditions (pH 8.5). La LIII-edge extended X-ray absorption fine structure analysis indicated that PO4 was bonded on La sites by forming inner sphere bidentate-binuclear complexes and oxygen defects exhibited on LAH surfaces, which could be active adsorption sites for PO4. The electrostatic interaction, ligand exchange, and oxygen defects on LAH surfaces jointly facilitated PO4 adsorption but with varied contribution under different pH conditions. The combined contribution of two-component of La and Al may be an important direction for the next generation of commercial products for eutrophication mitigation.
Keyphrases
  • aqueous solution
  • high resolution
  • climate change
  • escherichia coli
  • gold nanoparticles
  • heavy metals
  • molecular dynamics simulations
  • anaerobic digestion