Login / Signup

Electroabsorption Spectroscopy as a Tool for Probing Charge Transfer and State Mixing in Thermally Activated Delayed Fluorescence Emitters.

Daniel de Sa PereiraChristopher MenelaouAndrew DanosChristel M MarianAndrew P Monkman
Published in: The journal of physical chemistry letters (2019)
Solid-state electroabsorption is demonstrated as a powerful tool for probing the charge transfer (CT) character and state mixing in the low-energy optical transitions of two structurally similar thermally activated delayed fluorescent (TADF) materials with divergent photophysical and device performances. The Liptay model is used to fit differentials of the low-energy absorption bands to the measured electroabsorption spectra, with both emitters showing CT characteristics and large changes in dipole moments upon excitation despite the associated absorption bands appearing to be structured. High electric fields then reveal transfer of oscillator strength to a state close to the CT in the better performing molecule. With supporting TDDFT-TDA and DFT/MRCI calculations, this state showed ππ* characteristics of a local acceptor triplet that strongly mixes with the σπ* of the CT. The emitter with poor TADF performance showed no evidence of such mixing.
Keyphrases