Selective Encapsulation and Unusual Stabilization of cis-Isomers by a Spherical Polyaromatic Cavity.
Mana YuasaRyuki SumidaYuya TanakaMichito YoshizawaPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2022)
To explore new cavity functions, we herein employed cis-trans stereoisomers with a N=N, C=C, or C=N unit as guest indicators for a polyaromatic capsule. Thanks to the rigid, spherical cavity with a diameter of ∼1 nm, azobenzene and stilbene derivatives are quantitatively encapsulated by the capsule with 100 % cis-selectivity in water. The isomerization of the cis-azo compound is suppressed against heat and light in the cavity, due to the confinement effect. Furthermore, C,N-diphenyl imine derivatives are quantitatively encapsulated by the capsule in water and adopt an otherwise unstable cis-form. The polyaromatic cavity suppresses the hydrolysis of the imines in water, even at elevated temperature, due to the shielding effect. Accordingly, the properties of the cis-trans isomers could be largely altered through supramolecular manipulation.