Development of models for classification of action between heat-clearing herbs and blood-activating stasis-resolving herbs based on theory of traditional Chinese medicine.
Zhao ChenYanfeng CaoShuaibing HeYanjiang QiaoPublished in: Chinese medicine (2018)
The performance on validation set and external validation set of deep learning methods (DBN, CNN) were better than machine learning models (kNN, SVM) in sensitivity, specificity, precision, accuracy when predicting the actions of heat-clearing and blood-activating stasis-resolving based on TCM-HP theory. The deep learning classification methods owned better generalization ability and accuracy when predicting the actions of heat-clearing and blood-activating stasis-resolving based on TCM-HP theory. Besides, the methods of deep learning would help us to improve our understanding about the relationship between herbal property and action, as well as to enrich and develop the theory of TCM-HP scientifically.