Textile Functionalization Using LTA and FAU Zeolitic Materials.
Fabian N Murrieta-RicoRosario Isidro Yocupicio-GaxiolaJoel Antúnez-GarciaArmando Reyes-SerratoPerla Sánchez-LópezVitalii PetranovskiiPublished in: Polymers (2022)
COVID-19 has drawn worldwide attention to the need for personal protective equipment. Face masks can be transformed from passive filters into active protection. For this purpose, it is sufficient to apply materials with oligodynamic effect to the fabric of the masks, which makes it possible to destroy infectious agents that have fallen on the mask with aerosol droplets from the air stream. Zeolites themselves are not oligodynamic materials, but can serve as carriers for nanoparticles of metals and/or compounds of silver, zinc, copper, and other materials with biocidal properties. Such a method, when the particles are immobilized on the surface of the substrate, will increase the lifetime of the active oligodynamic material. In this work, we present the functionalization of textile materials with zeolites to obtain active personal protective equipment with an extended service life. This is done with the aim to extend the synthesis of zeolitic materials to polymeric fabrics beyond cotton. The samples were characterized using XRD, SEM, and UV-Vis spectroscopy. Data of physicochemical studies of the obtained hybrid materials (fabrics with crystals grown on fibers) will be presented, with a focus on the effect of fabrics in the growth process of zeolites.