An Accurate and Transferable Coarse-Graining Method for the Investigation of Microscopic Fracture Behaviors of Epoxy Thermosets.
Chang GaoHongzhi ChenXufeng DongLantian TangDuo ChenJia YanHao XuZhanjun WuPublished in: The journal of physical chemistry. B (2024)
Coarse-grained modeling shows potential in exploring the thermo-mechanical behaviors of polymers applied in harsh conditions such as cryogenic environment, but its accuracy in simulating fracture behaviors of highly cross-linked epoxy thermosets is largely limited due to the complex molecular structures of the cross-linked networks. We address this fundamental problem by developing a CG modeling method where the backbones and electrostatic interaction (EI) contributions in the cross-linked networks are retained, and thus the potentials of the CG model can be directly extracted, or parametrized on the basis of, existing all-atomistic (AA) force fields. A multilevel parametrization procedure was adopted, where the bond potentials were parametrized relying on the results of density functional theory (DFT) simulation, whereas the nonbond potentials were parametrized by renormalizing the cohesive interaction strength. Remarkably, the CG model can reproduce stress-strain responses highly consistent with the AA simulation results at multiple stages, including elastic deformation, yielding, plastic flow, strain hardening, etc., and the straightforward parametrization procedure can be easily transferred to different materials and thermodynamic conditions. The CG modeling method was then used to build a large-scale representative volume element (RVE) to investigate the microscopic fracture behavior of an epoxy thermoset. It has been discovered that EI contributions play a significant role in generating correct mechanical responses and fracture morphologies. The influences of temperature (i.e., from room to cryogenic temperatures) and strain rates were discussed, and the fracture morphology in the RVE was unveiled and analyzed in a quantitative manner.