Photoluminescence modification of europium(III)-doped MAl 2 O 4 (M = Zn, Mg) spinels induced by Ag@SiO 2 core-shell nanoparticles.
Rodrigo A Valenzuela-FernándezArianne MaineJulien CardinXavier PortierChristophe LabbéCristóbal PintoFrancisco MeloNancy PizarroVíctor VargasCamilo SeguraAntonio Galdámez SilvaPublished in: Nanoscale (2024)
In recent years, there has been an increasing interest in developing new inorganic compounds with exceptional properties for advanced materials. Specifically, compounds containing europium have attracted much attention due to their luminescent properties. These compounds are used in electronics, biotechnology, medicine, and catalysis. Eu is known for its characteristic red emission, which can be influenced by the environment. This study investigates the surface-enhancement luminescence of europium-doped spinel oxides using modified surface with silver (Ag@SiO 2 core-shell) nanoparticles as the enhancers. The europium-doped spinels were synthesized through a sol-gel method, and characterization techniques were used to analyze their structure and morphology. Photoluminescence spectra exhibited characteristic Eu 3+ transitions, with the hypersensitive transition being the most prominent. The interaction with an Ag@SiO 2 modified-surface led to a significant increase in photoluminescence. The study also analyzed the photoluminescence excitation and lifetimes of the oxides, leading to a 7.3-fold increase in photoluminescence. The improvements observed in the luminescence of these tailor-made materials show their potential interest in next-generation technologies.