Login / Signup

Identification and classification of interstitial cells in the mouse renal pelvis.

Nathan GraingerRyan S FreemanCameron C ShonnardBernard T DrummSang Don KohSean M WardKenton M Sanders
Published in: The Journal of physiology (2020)
Rhythmic contractions of the renal pelvis transport urine from the kidneys into the ureter. Specialized pacemaker cells, termed atypical smooth muscle cells (ASMCs), are thought to drive the peristaltic contractions of typical smooth muscle cells (TSMCs) in the renal pelvis. Interstitial cells (ICs) in close proximity to ASMCs and TSMCs have been described, but the role of these cells is poorly understood. The presence and distributions of platelet-derived growth factor receptor-α+ (PDGFRα+ ) ICs in the pelvis-kidney junction (PKJ) and distal renal pelvis were evaluated. We found PDGFRα+ ICs in the adventitial layers of the pelvis, the muscle layer of the PKJ and the adventitia of the distal pelvis. PDGFRα+ ICs were distinct from c-Kit+ ICs in the renal pelvis. c-Kit+ ICs are a minor population of ICs in murine renal pelvis. The majority of c-Kit+ cells were mast cells. PDGFRα+ cells in the PKJ co-expressed smooth muscle myosin heavy chain (smMHC) and several other smooth muscle gene transcripts, indicating these cells are ASMCs, and PDGFRα is a novel biomarker for ASMCs. PDGFRα+ cells also express Ano1, which encodes a Ca2+ -activated Cl- conductance that serves as a primary pacemaker conductance in ICs of the GI tract. Spontaneous Ca2+ transients were observed in c-Kit+ ICs, smMHC+ PDGFRα cells and smMHC- PDGFRα cells using genetically encoded Ca2+ sensors. A reporter strain of mice with enhanced green fluorescent protein driven by the endogenous promotor for Pdgfra was shown to be a powerful new tool for isolating and characterizing the phenotype and functions of these cells in the renal pelvis.
Keyphrases