Login / Signup

Tissue-Engineered 3D In Vitro Disease Models for High-Throughput Drug Screening.

Gillian HuskinJun ChenTrenton DavisHo-Wook Jun
Published in: Tissue engineering and regenerative medicine (2023)
During high-throughput drug screening, in vitro models are fabricated and the effects of therapeutics on the models evaluated in high throughput-for example, with automated liquid handling systems and microplate reader-based high-throughput screening (HTS) assays. The most frequently-used model systems for HTS, 2D models, do not adequately model the in vivo 3D microenvironment-an important aspect of which is the extracellular matrix-and therefore, 2D models may not be appropriate for drug screening. Instead, tissue-engineered 3D models with extracellular matrix-mimicking components are destined to become the preferred in vitro systems for HTS. However, for 3D models, such as 3D cell-laden hydrogels and scaffolds, cell sheets, and spheroids as well as 3D microfluidic and organ-on-a-chip systems, to replace 2D models in HTS, they must be compatible with high-throughput fabrication schemes and evaluation methods. In this review, we summarize HTS in 2D models and discuss recent studies that have successfully demonstrated HTS-compatible 3D models of high-impact diseases, such as cancers or cardiovascular diseases.
Keyphrases