Selective Deposition of Copper on Self-Assembled Block Copolymer Surfaces via Physical Vapor Deposition.
Sangho LeeWonmoo LeeHee-Tae JungCaroline A RossPublished in: ACS applied materials & interfaces (2021)
Block copolymer (BCP) self-assembly produces chemically and topographically patterned surfaces which are used to guide the formation of Cu nanostructures by exploiting differences in the mobility of vapor-deposited species on each microdomain. Cu metal films a few nm thick were deposited on three different BCP surfaces self-assembled from poly(styrene-b-methyl methacrylate) (PS-b-PMMA) and polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP). For PS-b-PMMA, the effects of chemical heterogeneity dominate over the effects of the 2 nm peak-to-valley topography, and sputtered Cu preferentially wets the PS block. PS-b-P2VP has greater chemical and topographical contrast and shows a wider process window for selective deposition. Cu grown by evaporation has less surface mobility, and shadowing effects are believed to dominate pattern formation. The hierarchical self-assembly process of thin metal films on BCP surfaces provides a route to fabricating heterogeneous metallic nanostructures.