Login / Signup

Optical dِِِِiscrimination of histamine and ethylenediamine in meat samples using a colorimetric affordable test strip (CATS): introducing a novel lab-on paper sensing strategy for low-cost ensuring food safety by rapid and accurate monitoring of biogenic amines.

Arezoo SaadatiFatemeh FarshchiMohsen JafariHouman Kholafazad KordashtMohammad HasanzadehNasrin Shadjou
Published in: RSC advances (2024)
Biogenic amines (BAs) are a group of organic compounds that are produced through the decarboxylation of amino acids by microorganisms. These compounds are commonly found in a variety of foods and are known to cause adverse health effects if consumed in high concentrations. Therefore, the development of sensitive and rapid detection methods for detection and determination of BAs is essential for ensuring food safety. In this study, a novel colorimetric affordable test strip (CATS) was developed for the colorimetric and naked-eye detection of two BAs of ethylenediamine (EDA) and histamine (HIS) in meat samples. Also, triangular silver nanoparticles (AgNPrs) were used as a diagnostic optical probe, and CATS used as a simple, environmentally friendly, inexpensive diagnostic substrate for on - site recognition of meat spoil. The AgNPrs-based optosensor demonstrated high sensitivity and selectivity towards EDA and HIS, allowing for the detection of low concentrations of the BAs in real food samples such as raw chicken and beef. The system presented a UV-vis technique for HIS and EDA analysis in the linear range of 0.1 μM to 0.01 mM, with an LLOQ of 0.1 μM, and 0.05 to 1 μM, with an LLOQ of 0.05 μM, respectively. Additionally, the performance of the designed CATS in the analysis of produced gases was evaluated, highlighting the potential of this simple and cost-effective strategy for the development of BAs diagnostic kits. This approach provides a simple and cost-effective method for detecting BAs in food, which could be beneficial for ensuring food safety and preventing the harmful effects associated with their consumption.
Keyphrases