Login / Signup

Physicochemical Characterization of a Biomimetic, Elastin-Inspired Polypeptide with Enhanced Thermoresponsive Properties and Improved Cell Adhesion.

Antonella BandieraLaura Colomina-AlfaroPaola SistGiovanna Gomez d'AyalaFederica ZuppardiPierfrancesco CerrutiOvidio CatanzanoSabina PassamontiRanieri Urbani
Published in: Biomacromolecules (2023)
Genetic engineering allows fine-tuning and controlling protein properties, thus exploiting the new derivatives to obtain novel materials and systems with improved capacity to actively interact with biological systems. The elastin-like polypeptides are tunable recombinant biopolymers that have proven to be ideal candidates for realizing bioactive interfaces that can interact with biological systems. They are characterized by a thermoresponsive behavior that is strictly related to their peculiar amino acid sequence. We describe here the rational design of a new biopolymer inspired by elastin and the comparison of its physicochemical properties with those of another already characterized member of the same protein class. To assess the cytocompatibility, the behavior of cells of different origins toward these components was evaluated. Our study shows that the biomimetic strategy adopted to design new elastin-based recombinant polypeptides represents a versatile and valuable tool for the development of protein-based materials with improved properties and advanced functionality.
Keyphrases
  • amino acid
  • cell adhesion
  • protein protein
  • induced apoptosis
  • air pollution
  • signaling pathway
  • genome wide
  • small molecule
  • cell free
  • dna methylation
  • quantum dots
  • endoplasmic reticulum stress