Matrix Product State Formulation of the MCTDH Theory in Local Mode Representations for Anharmonic Potentials.
Kentaro HinoYuki KurashigePublished in: Journal of chemical theory and computation (2022)
The matrix product state formulation of the multiconfiguration time-dependent Hartree theory, MPS-MCTDH, reported previously [Kurashige, J. Chem. Phys. 2018 , 19 , 194114] is extended to realistic anharmonic potentials with n -mode representations beyond the linear vibronic coupling model. For realistic vibrational potentials, the local mode representation should give a more compact representation of the potentials, i.e., lowering the dimensionality of the entanglements, than the normal coordinates, and the MPS-MCTDH formulation should work more efficiently and maintain the accuracy with a small bond dimension of the MPS ansatz. In fact, it was confirmed that the use of the local coordinates made the interaction matrices diagonal dominant and the number of terms in the n -body expansion of the potentials was significantly reduced. The method was applied to the IR spectrum of the CH 2 O molecule, the zero-point energies, and the vibrational energy redistribution dynamics of polyenes C 2 n H 2 n +2 . The results showed that the efficiency of the MPS-MCTDH method is significantly accelerated by the use of local coordinates even if the long-range interactions are included in the potential.