Login / Signup

Nano-Delivery System of Ethanolic Extract of Propolis Targeting Mycobacterium tuberculosis via Aptamer-Modified-Niosomes.

Sirikwan SangboonruangNatthawat SemakulSureeporn SuriyapromKuntida KitideeJiaranai KhantipongseSorasak IntorasootChayada Sitthidet TharinjaroenUsanee AnukoolBordin Butr-IndrPonrut PhunpaeKhajornsak Tragoolpua
Published in: Nanomaterials (Basel, Switzerland) (2023)
Tuberculosis (TB) therapy requires long-course multidrug regimens leading to the emergence of drug-resistant TB and increased public health burden worldwide. As the treatment strategy is more challenging, seeking a potent non-antibiotic agent has been raised. Propolis serve as a natural source of bioactive molecules. It has been evidenced to eliminate various microbial pathogens including Mycobacterium tuberculosis (Mtb). In this study, we fabricated the niosome-based drug delivery platform for ethanolic extract of propolis (EEP) using thin film hydration method with Ag85A aptamer surface modification (Apt-PEGNio/EEP) to target Mtb. Physicochemical characterization of PEGNio/EEP indicated approximately -20 mV of zeta potential, 180 nm of spherical nanoparticles, 80% of entrapment efficiency, and the sustained release profile. The Apt-PEGNio/EEP and PEGNio/EEP showed no difference in these characteristics. The chemical composition in the nanostructure was confirmed by Fourier transform infrared spectrometry. Apt-PEGNio/EEP showed specific binding to Mycobacterium expressing Ag85 membrane-bound protein by confocal laser scanning microscope. It strongly inhibited Mtb in vitro and exhibited non-toxicity on alveolar macrophages. These findings indicate that the Apt-PEGNio/EEP acts as an antimycobacterial nanoparticle and might be a promising innovative targeted treatment. Further application of this smart nano-delivery system will lead to effective TB management.
Keyphrases