Efficiency of Crude Protein Utilisation in Grazing Dairy Cows: A Case Study Comparing Two Production Systems Differing in Intensification Level in New Zealand.
Martin Correa-LunaDaniel DonaghyPeter D KempMichael SchutzNicolas López-VillalobosPublished in: Animals : an open access journal from MDPI (2020)
In this study, we modelled and compared lactation curves of efficiency of crude protein utilisation (ECPU) and the nitrogen (N) excreta partitioning of milking cows of two contrasting spring-calving pasture-based herds to test some aspects of farming intensification practices on cow performance and N partition. In the low-intensity production system (LIPS), 257 cows were milked once-daily and fed diets comprised of pasture with low supplementary feed inclusion during lactation (304 kg pasture silage/cow). In the high-intensity production system (HIPS), 207 cows were milked twice-daily and fed pasture with higher supplementary feed inclusion (429 kg pasture silage and 1695 kg concentrate/cow). The dietary crude protein (CP) utilisation was calculated for each cow at every herd test date as the ECPU as a proportion of protein yield (PY) from the CP intake (CPI) derived from intake assessments based on metabolisable energy requirements, and the CP balance (CPB) calculated as the difference between CPI and PY. Total N excreta partitioned to faeces (FN) and urine (UN) was estimated by back-calculating UN from FN, considering dietary N, and from N retained in body tissues, taking into account live weight change during the lactation. The higher CPI (2.7 vs. 2.5 kg CP/day), along with the reduced milk yield (1100 kg milk/cow less), of the LIPS cows led to a lower ECPU (23% vs. 31%) and to a higher CPB (2.1 vs. 1.8 kg CP/day) when compared to the HIPS cows. Mean N excreta, and particularly UN, was significantly higher in LIPS cows, and this was explained by higher dietary CP and by the reduced PY when compared to the HIPS cows. Reducing the low-CP supplementation in the "de-intensified" herd lessened the ECPU, resulting in higher UN, which is sensitive in terms of body water eutrophication.