Login / Signup

Third-Order Many-Body Expansion of OSV-MP2 Wave Function for Low-Order Scaling Analytical Gradient Computation.

Qiujiang LiangJun Yang
Published in: Journal of chemical theory and computation (2021)
We present a many-body expansion (MBE) formulation and implementation for efficient computation of analytical energy gradients from the orbital-specific-virtual second-order Møllet-Plesset perturbation theory (OSV-MP2) based on our earlier work (Zhou et al. J. Chem. Theory Comput. 2020, 16, 196-210). The third-order MBE(3) expansion of OSV-MP2 amplitudes and density matrices was developed to adopt the orbital-specific clustering and long-range termination schemes, which avoids term-by-term differentiations of the MBE energy bodies. We achieve better efficiency by exploiting the algorithmic sparsity that allows us to prune out insignificant fitting integrals and OSV relaxations. With these approximations, the present implementation is benchmarked on a range of molecules that show an economic scaling in the linear and quadratic regimes for computing MBE(3)-OSV-MP2 amplitude and gradient equations, respectively, and yields normal accuracy comparable to the original OSV-MP2 results. The MPI-3-based parallelism through shared memory one-sided communication is further developed for improving parallel scalability and memory accessibility by sorting the MBE(3) orbital clusters into independent tasks that are distributed on multiple processes across many nodes, supporting both global and local data locations in which selected MBE(3)-OSV-MP2 intermediates of different sizes are distinguished and accordingly placed. The accuracy and efficiency level of our MBE(3)-OSV-MP2 analytical gradient implementation is finally illustrated in two applications: we show that the subtle coordination structure differences of mechanically interlocked Cu-catenane complexes can be distinguished when tuning ligand lengths; and the porphycene molecular dynamics reveals the emergence of the vibrational signature arising from softened N-H stretching associated with hydrogen transfer, using an MP2 level of electron correlation and classical nuclei for the first time.
Keyphrases