Login / Signup

Highly Stable and Multifunctional Aza-BODIPY-Based Phototherapeutic Agent for Anticancer Treatment.

Yunjian XuMenglong ZhaoLiang ZouLicai WuMingjuan XieTianshe YangShujuan LiuKaiwei HuangQiang Zhao
Published in: ACS applied materials & interfaces (2018)
Phototherapy, as an important class of noninvasive tumor treatment methods, has attracted extensive research interest. Although a large amount of the near-infrared (NIR) phototherapeutic agents have been reported, the low efficiency, complicated structures, tedious synthetic procedures, and poor photostability limit their practical applications. To solve these problems, herein, a donor-acceptor-donor (D-A-D) type organic phototherapeutic agent (B-3) based on NIR aza-boron-dipyrromethene (aza-BODIPY) dye has been constructed, which shows the enhanced photothermal conversion efficiency and high singlet oxygen generation ability by simultaneously utilizing intramolecular photoinduced electron transfer (IPET) mechanism and heavy atom effects. After facile encapsulation of B-3 by amphiphilic DSPE-mPEG5000 and F108, the formed nanoparticles (B-3 NPs) exhibit the excellent photothermal stabilities and reactive oxygen and nitrogen species (RONS) resistance compared with indocyanine green (ICG) proved for theranostic application. Noteworthily, the B-3 NPs can remain outstanding photothermal conversion efficiency (η = 43.0%) as well as continuous singlet oxygen generation ability upon irradiation under a single-wavelength light. Importantly, B-3 NPs can effectively eliminate the tumors with no recurrence via synergistic photothermal/photodynamic therapy under mild condition. The exploration elaborates the photothermal conversion mechanism of small organic compounds and provides a guidance to develop excellent multifunctional NIR phototherapeutic agents for the promising clinical applications.
Keyphrases