Rational Synthesis of Solid-State Ultraviolet B Emitting Carbon Dots via Acetic Acid-Promoted Fractions of sp 3 Bonding Strategy.
Jiahui XuQingjing LiangZijian LiVladimir Yu OsipovYangjian LinBinghui GeQian XuJunfa ZhuHong BiPublished in: Advanced materials (Deerfield Beach, Fla.) (2022)
Carbon dots (CDs) have received tremendous attention for their excellent photoluminescence (PL) properties. However, it remains a great challenge to obtain CDs with ultraviolet (UV, 200-400 nm) emission in solid state, which requires strict control of the CDs structure and overcoming the aggregation-caused quenching (ACQ). Herein, a new sp 3 compartmentalization strategy is developed to meet these requirements, by employing acetic acid to promote fractions of sp 3 bonding during the synthesis of CDs. It markedly decreases the size of sp 2 conjugating units in the CDs, and shifts PL emission to the ultraviolet B (UVB) region (λ max = 308 nm). Moreover, sp 2 domains are well spatially compartmentalized by sp 3 domains and the ACQ effect is minimized, enabling the high quantum yield in solid state (20.2%, λ ex = 265 nm) with a narrow bandwidth of 24 nm and environmental robustness. The solid-state UVB emissive CDs are highly desired for application in photonic devices. Hence, a demo of UVB light-emitting diodes is fabricated for plant lighting, leading to a 29% increase of ascorbic acid content in the basil. Overall, a rational and efficient way to construct solid UVB-CDs phosphors for wide applications is provided.