Effect of Surface Modifications on Surface Roughness of Ti6Al4V Alloy Manufactured by 3D Printing, Casting, and Wrought.
János KónyaHajnalka HargitaiHassanen JaberPéter PinkeTünde Anna KovácsPublished in: Materials (Basel, Switzerland) (2023)
This work aimed to comprehensively evaluate the influence of different surface modifications on the surface roughness of Ti6Al4V alloys produced by selective laser melting (SLM), casting and wrought. The Ti6Al4V surface was treated using blasting with Al 2 O 3 (70-100 µm) and ZrO 2 (50-130 µm) particles, acid etching with 0.017 mol/dm 3 hydrofluoric acids (HF) for 120 s, and a combination of blasting and acid etching (SLA). It was found that the optimization of the surface roughness of Ti6Al4V parts produced by SLM differs significantly from those produced by casting or wrought processes. Experimental results showed that Ti6Al4V alloys produced by SLM and blasting with Al 2 O 3 followed by HF etching had a higher surface roughness (Ra = 2.043 µm, Rz = 11.742 µm), whereas cast and wrought Ti6Al4V components had surface roughness values of (Ra = 1.466, Rz = 9.428 m) and (Ra = 0.940, Rz = 7.963 m), respectively. For Ti6Al4V parts blasted with ZrO 2 and then etched by HF, the wrought Ti6Al4V parts exhibited higher surface roughness (Ra = 1.631 µm, Rz = 10.953 µm) than the SLM Ti6Al4V parts (Ra = 1.336 µm, Rz = 10.353 µm) and the cast Ti6Al4V parts (Ra = 1.075 µm, Rz = 8.904 µm).