Cepabiflas B and C as Novel Anti-Inflammatory and Anti-Apoptotic Agents against Endotoxin-Induced Acute Kidney and Hepatic Injury in Mice: Impact on Bax/Bcl2 and Nrf2/NF-κB Signalling Pathways.
Akaber T RizqAlaa SirwiDina S El-AgamyHossam Mohamed AbdallahSabrin Ragab Mohamed IbrahimGamal Abdallah MohamedPublished in: Biology (2023)
Cepabiflas B and C (CBs) are flavonoid dimers separated from Allium cepa . They demonstrated antioxidant and α-glucosidase and protein tyrosine phosphatase 1B inhibition capacities. However, their anti-inflammatory activities and their effects on endotoxemia are unknown. The current study aimed at exploring the protective activities of CBs on lipopolysaccharide (LPS)-induced kidney and liver damage in mice and investigating the possible molecular mechanisms. Mice were orally treated with a low (40 mg/kg) or high (60 mg/kg) dose of CBs for five days prior to a single intraperitoneal injection of LPS (10 mg/kg). Samples of serum and hepatic and kidney tissues were collected 24 h after the LPS challenge. Changes in serum indices of hepatic and renal injury, pathological changes, molecular biological parameters, and proteins/genes related to inflammation and apoptosis of these organs were estimated. LPS injection resulted in deleterious injury to both organs as indicated by elevation of serum ALT, AST, creatinine, and BUN. The deteriorated histopathology of hepatic and renal tissues confirmed the biochemical indices. CBs treated groups showed a reduction in these parameters and improved histopathological injurious effects of LPS. LPS-induced hepatorenal injury was linked to elevated oxidative stress as indicated by high levels of MDA, 4-HNE, as well as repressed antioxidants (TAC, SOD, and GSH) in hepatic and kidney tissues. This was accompanied with suppressed Nrf2/HO-1 activity. Additionally, there was a remarkable inflammatory response in both organs as NF-κB signalling was activated and high levels of downstream cytokines were produced following the LPS challenge. Apoptotic changes were observed as the level and gene expression of Bax and caspase-3 were elevated along with declined level and gene expression of Bcl2. Interestingly, CBs reversed all these molecular and genetic changes and restricted oxidative inflammatory and apoptotic parameters after LPS-injection. Collectedly, our findings suggested the marked anti-inflammatory and anti-apoptotic activity of CBs which encouraged its use as a new candidate for septic patients.
Keyphrases
- lps induced
- anti inflammatory
- inflammatory response
- oxidative stress
- gene expression
- induced apoptosis
- lipopolysaccharide induced
- cell death
- toll like receptor
- ischemia reperfusion injury
- diabetic rats
- dna damage
- high fat diet induced
- dna methylation
- newly diagnosed
- genome wide
- prognostic factors
- immune response
- skeletal muscle
- pi k akt
- nuclear factor
- heat stress
- signaling pathway
- chronic kidney disease
- adipose tissue
- fluorescent probe
- wild type