Horizontal Transfer of Malignant Traits and the Involvement of Extracellular Vesicles in Metastasis.
Goffredo O ArenaStefano ForteMohamed AbdouhBradley HavinsDenis CorbeilAurelio LoricoPublished in: Cells (2023)
Metastases are responsible for the vast majority of cancer deaths, yet most therapeutic efforts have focused on targeting and interrupting tumor growth rather than impairing the metastatic process. Traditionally, cancer metastasis is attributed to the dissemination of neoplastic cells from the primary tumor to distant organs through blood and lymphatic circulation. A thorough understanding of the metastatic process is essential to develop new therapeutic strategies that improve cancer survival. Since Paget's original description of the "Seed and Soil" hypothesis over a hundred years ago, alternative theories and new players have been proposed. In particular, the role of extracellular vesicles (EVs) released by cancer cells and their uptake by neighboring cells or at distinct anatomical sites has been explored. Here, we will outline and discuss these alternative theories and emphasize the horizontal transfer of EV-associated biomolecules as a possibly major event leading to cell transformation and the induction of metastases. We will also highlight the recently discovered intracellular pathway used by EVs to deliver their cargoes into the nucleus of recipient cells, which is a potential target for novel anti-metastatic strategies.
Keyphrases
- papillary thyroid
- small cell lung cancer
- induced apoptosis
- squamous cell carcinoma
- squamous cell
- cell cycle arrest
- lymph node
- lymph node metastasis
- stem cells
- cell death
- oxidative stress
- gene expression
- childhood cancer
- genome wide
- young adults
- endoplasmic reticulum stress
- cancer therapy
- human health
- reactive oxygen species