Login / Signup

A quantum-dot heat engine operating close to the thermodynamic efficiency limits.

Martin JosefssonArtis SvilansAdam M BurkeEric A HoffmannSofia FahlvikClaes ThelanderMartin LeijnseHeiner Linke
Published in: Nature nanotechnology (2018)
Cyclical heat engines are a paradigm of classical thermodynamics, but are impractical for miniaturization because they rely on moving parts. A more recent concept is particle-exchange (PE) heat engines, which uses energy filtering to control a thermally driven particle flow between two heat reservoirs1,2. As they do not require moving parts and can be realized in solid-state materials, they are suitable for low-power applications and miniaturization. It was predicted that PE engines could reach the same thermodynamically ideal efficiency limits as those accessible to cyclical engines3-6, but this prediction has not been verified experimentally. Here, we demonstrate a PE heat engine based on a quantum dot (QD) embedded into a semiconductor nanowire. We directly measure the engine's steady-state electric power output and combine it with the calculated electronic heat flow to determine the electronic efficiency η. We find that at the maximum power conditions, η is in agreement with the Curzon-Ahlborn efficiency6-9 and that the overall maximum η is in excess of 70% of the Carnot efficiency while maintaining a finite power output. Our results demonstrate that thermoelectric power conversion can, in principle, be achieved close to the thermodynamic limits, with direct relevance for future hot-carrier photovoltaics10, on-chip coolers or energy harvesters for quantum technologies.
Keyphrases
  • heat stress
  • room temperature
  • high throughput
  • current status
  • single cell
  • quantum dots