Advances in Dystrophinopathy Diagnosis and Therapy.
Fawzy A SaadGabriele SicilianoCorrado I AngeliniPublished in: Biomolecules (2023)
Dystrophinopathies are x-linked muscular disorders which emerge from mutations in the Dystrophin gene, including Duchenne and Becker muscular dystrophy, and dilated cardiomyopathy. However, Duchenne muscular dystrophy interconnects with bone loss and osteoporosis, which are exacerbated by glucocorticoids therapy. Procedures for diagnosing dystrophinopathies include creatine kinase assay, haplotype analysis, Southern blot analysis, immunological analysis, multiplex PCR, multiplex ligation-dependent probe amplification, Sanger DNA sequencing, and next generation DNA sequencing. Pharmacological therapy for dystrophinopathies comprises glucocorticoids (prednisone, prednisolone, and deflazacort), vamorolone, and ataluren. However, angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and β-blockers are the first-line to prevent dilated cardiomyopathy in dystrophinopathy patients. Duchenne muscular dystrophy gene therapy strategies involve gene transfer, exon skipping, exon reframing, and CRISPR gene editing. Eteplirsen, an antisense-oligonucleotide drug for skipping exon 51 from the Dystrophin gene, is available on the market, which may help up to 14% of Duchenne muscular dystrophy patients. There are various FDA-approved exon skipping drugs including ExonDys-51 for exon 51, VyonDys-53 and Viltolarsen for exon 53 and AmonDys-45 for exon 45 skipping. Other antisense oligonucleotide drugs in the pipeline include casimersen for exon 45, suvodirsen for exon 51, and golodirsen for exon 53 skipping. Advances in the diagnosis and therapy of dystrophinopathies offer new perspectives for their early discovery and care.
Keyphrases
- duchenne muscular dystrophy
- muscular dystrophy
- angiotensin converting enzyme
- angiotensin ii
- end stage renal disease
- newly diagnosed
- high throughput
- genome wide
- bone loss
- healthcare
- prognostic factors
- gene therapy
- nucleic acid
- small molecule
- palliative care
- bone marrow
- cell free
- patient reported outcomes
- genome wide identification
- high intensity
- body composition
- quantum dots
- tyrosine kinase
- drug administration
- transcription factor