Login / Signup

Bubble shape instability of acoustic cavitation in molten metal used in ultrasonic casting.

Takuya Yamamoto
Published in: Ultrasonics sonochemistry (2024)
In this study, we estimated the equilibrium bubble size of acoustic cavitation in a molten metal, which is basic information in ultrasonic casting. For this, the bubble shape instability of acoustic cavitation in the melt was numerically investigated by solving the Keller-Miksis equation and dynamic equation of the distortion amplitude. The acoustic cavitation bubbles are more stable in aluminum and magnesium melts than in water, and the parametric instability mainly determines the bubble stability at 20-160 kHz in molten metals. However, the afterbounce instability does not significantly affect the bubble stability in molten metals owing to the small number of bubble oscillations after the first rapid compression, and the distortion amplitude cannot grow significantly after the first compression. The bubbles in the melt become more unstable with an increase in the ultrasonic frequency owing to the corresponding increase in the bubble wall velocity. Through this stability analysis, we can estimate that the stable bubble size in the aluminum or magnesium melt is approximately three or four times larger than that in water at the same ultrasonic pressure amplitude.
Keyphrases
  • resting state
  • working memory
  • high frequency
  • risk assessment
  • functional connectivity
  • human health
  • social media
  • high speed