Ultrafast Nanoimaging of Electronic Coherence of Monolayer WSe 2 .
Wenjin LuoBenjamin G WhettenVasily KravtsovAshutosh SinghYibo YangDi HuangXinbin ChengTao JiangAlexey BelyaninMarkus B RaschkePublished in: Nano letters (2023)
Transition-metal dichalcogenides (TMDs) have demonstrated a wide range of novel photonic, optoelectronic, and correlated electron phenomena for more than a decade. However, the coherent dynamics of their excitons, including possibly long dephasing times and their sensitivity to spatial heterogeneities, are still poorly understood. Here we implement adiabatic plasmonic nanofocused four-wave mixing (FWM) to image the coherent electron dynamics in monolayer WSe 2 . We observe nanoscale heterogeneities at room temperature with dephasing ranging from T 2 ≲ 5 to T 2 ≳ 60 fs on length scales of 50-100 nm. We further observe a counterintuitive anticorrelation between FWM intensity and T 2 , with the weakest FWM emission at locations of longest coherence. We interpret this behavior as a nonlocal nano-optical interplay between spatial coherence of the nonlinear polarization and disorder-induced scattering. The results highlight the challenges associated with heterogeneities in TMDs limiting their photophysical properties, yet also the potential of their novel nonlinear optical phenomena.