Predicting buoyant jet characteristics: a machine learning approach.
Hossein HassanzadehSaptarshi JoshiSeyed Mohammad TaghaviPublished in: Chemical product and process modeling (2023)
We study positively buoyant miscible jets through high-speed imaging and planar laser-induced fluorescence methods, and we rely on supervised machine learning techniques to predict jet characteristics. These include, in particular, predictions to the laminar length and spread angle, over a wide range of Reynolds and Archimedes numbers. To make these predictions, we use linear regression, support vector regression, random forests, K-nearest neighbour, and artificial neural network algorithms. We evaluate the performance of the aforementioned models using various standard metrics, finding that the random forest algorithm is the best for predicting our jet characteristics. We also discover that this algorithm outperforms a recent empirical correlation, resulting in a significant increase in accuracy, especially for predicting the laminar length.