Login / Signup

A Visible Codelivery Nanovaccine of Antigen and Adjuvant with Self-Carrier for Cancer Immunotherapy.

Xia DongJie LiangAfeng YangZhiyong QianDe Ling KongFeng Lv
Published in: ACS applied materials & interfaces (2019)
Codelivery nanovaccines of antigens and adjuvants have achieved positive therapy for cancer immunotherapy. The insufficient immunogenicity of these vaccines leads to the difficulty of eliciting robust immune effects for immune clearance due to the inadequate loading efficiency, complex preparation processes, low safety concerns, and weak immune responses. Herein, a visible codelivery nanovaccine of an antigen and adjuvant based on self-cross-linked antigen nanoparticles (ovalbumin nanoparticles (ONPs)) combined with the adjuvant (CpG) for cancer immunotherapy was prepared using antigens themselves as carriers. ONPs not only provide sufficient antigens for continuous simulation of the immune response with high antigen loading efficiency but also serve as natural carriers of CpG. In vitro and in vivo experiments proved that ONPs-CpG can elicit a robust immune response including DC maturity, T cell activation, and IFN-γ production. ONPs-CpG induced strong tumor-specific immunity and exhibited remarkable antitumor immunotherapy effects in vivo using mouse models of lymphoma. Furthermore, to perform the precise vaccine delivery, the dual fluorescent codelivery nanovaccine was monitored in real time in vivo by the visible imaging method. With regard to migration tracking, fluorescence imaging allowed for both high resolution and sensitivity of visible detection based on the fluorescence of ONPs and CpG. The multifunctional nanovaccine could function as a robust platform for cancer immunotherapy and a visible system for antigen-adjuvant tracking.
Keyphrases