Ionic S(N)i-Si Nucleophilic Substitution in N-Methylaniline-Induced Si-Si Bond Cleavages of Si2Cl6.
Jie ZhangJu XieMyong Euy LeeLin ZhangYujing ZuoShengyu FengPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2016)
N-Methylaniline-induced Si-Si bond cleavage of Si2Cl6 has been theoretically studied. All calculations were performed by using DFT at the MPWB1K/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) levels. An ionic SN i-Si nucleophilic substitution mechanism, which is a newly found nucleophilic substitution in silicon-containing compounds, is proposed in the N-methylaniline-induced Si-Si bond cleavage in Si2Cl6. Unlike general S(N)i-Si nucleophilic substitutions that go through a pentacoordinated silicon transition state, ionic nucleophilic substitution goes through a tetracoordinated silicon transition state, in which the Si-Si bond is broken and siliconium ions are formed. Special cleavage of the Si-Si bond is presumably due to the good bonding strength between Si and N atoms, which leads to polarization of the Si-Si bond and eventually to heterolytic cleavage. Calculation results show that, in excess N-methylaniline, the final products of the reaction, including (NMePh)(3-n) SiHCl(n) (n=0-2) and (NMePh)(4-n) SiCl(n) (n=2-3), are the Si-Si cleavage products of Si2Cl6 and the corresponding amination products of the former. The ionic S(N)i-Si nucleophilic substitution mechanism can also be employed to describe the amination of chlorosilane by N-methylaniline. The suggested mechanisms are consistent with experimental data.